
Matthew MacDonald and Mario Szpuszta,
Revising Authors

Pro ASP.NET 2.0
in C# 2005

K. Scott Allen
James Avery
Russ Basiura
Mike Batongbacal
Marco Bellinaso
Matt Butler
Andreas Eide
Daniel Cazzulino
Michael Clark
Richard Conway
Robert Eisenberg

Brady Gaster
James Greenwood
Kevin Hoffman
Erik Johansson
Angelo Kastroulis
Dan Kent
Sitaraman Lakshminarayanan
Don Lee
Christopher Miller
Matt Milner
Jan Narkiewicz

Matt Odhner
Ryan O'Keefe
Andrew Reid
Matthew Reynolds
Enrico Sabbadin
Bill Sempf
Doug Seven
Srinivasa Sivakumar
Thiru Thangarathinam
Doug Thews

4967FM.qxd 8/16/05 1:14 PM Page i

Pro ASP.NET 2.0 in C# 2005

Copyright © 2005 by Matthew MacDonald and Mario Szpuszta

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-496-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewers: Robert Lair, Jason Lefebvre
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,

Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Dina Quan
Proofreaders: Liz Welch and Lori Bring
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Interior Designer: Diana Van Winkle
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

4967FM.qxd 8/16/05 1:14 PM Page ii

Visual Studio 2005

With ASP.NET, you have several choices for developing web applications. If you’re inclined (and
don’t mind the work), you can code every web page and class by hand using a bare-bones text editor.
This approach is appealingly straightforward but tedious and error-prone for anything other than a
simple page. Professional ASP.NET developers rarely go this route.

Instead, almost all large-scale ASP.NET websites are built using Visual Studio. This professional
development tool supports a rich set of design tools, including a legendary set of debugging tools
and IntelliSense, which catches errors and offers suggestions as you type. Visual Studio also sup-
ports the robust code-behind model, which separates the .NET code you write from the web-page
markup tags. To seal the deal, Visual Studio 2005 adds a built-in test web server that makes debug-
ging Web sites easy and hassle free.

In this chapter, you’ll tour the Visual Studio IDE and explore its key features. You’ll also learn
about the coding model used for ASP.NET 2.0 web pages.

■Note Visual Studio 2005 is available in several versions. This chapter assumes you are using the full Visual
Studio 2005 Professional or Visual Studio 2005 Team System. If you are using the scaled-down Visual Web
Developer 2005 Express Edition, you will lose some features. Most notably, you won’t be able to create separate
components with class library projects.

VISUAL STUDIO 2005 CHANGES

If you’re a seasoned ASP.NET developer, you’re most interested in what’s new in Visual Studio 2005. Although most
of the editing features and debugging tools in Visual Studio 2005 are the same as those in Visual Studio 2003, the
underlying model has a few significant changes. Here are the four most significant changes, all of which you’ll learn
more about in this chapter:

• Projectless development: Visual Studio no longer clutters your web projects with extra development files
(such as .csproj and .sln). One obvious benefit of this model is that you can deploy exactly what you develop,
without needing to filter out just a subset of the files. However, as you’ll see in this chapter, the concept of
projectless development is slightly overstated. Visual Studio still stores some information in a solution file
(such as breakpoints and build settings), and it quietly stows that file away under a user-specific directory.
However, there’s a significant difference—these hidden solution files aren’t required. Essential details (such
as project references) are stored right in the web.config file. You’ll learn about projectless development in the
“Websites in Visual Studio” section of this chapter.

23

C H A P T E R 2

■ ■ ■

4967CH02.qxd 8/12/05 10:44 AM Page 23

• New compilation model: Visual Studio is no longer responsible for compiling your code. Instead, ASP.NET
takes on that responsibility exclusively. This gives Visual Studio more flexible debugging, and it simplifies
deployment on different platforms (for example, 32-bit and 64-bit Windows). It also allows you to combine
web pages written in C# with web pages written in another .NET language (such as Visual Basic) in the
same project.

• New code model: The shift in the compilation model also reduces the differences between the code-behind
model and the code-inline model of writing web pages, both of which Visual Studio now supports. However,
the syntax for code-behind is subtly different from that used for Visual Studio 2003 web pages, and you’ll
need to perform a one-way conversion operation to edit your web application in Visual Studio 2005. You’ll
learn about the coding model in “The Coding Model” later in this chapter.

• Integrated test web server: If you’ve programmed with Web Matrix (a scaled-down design tool used with
ASP.NET 1.x), you’ll recognize the new integrated web server, which allows you to run your web pages
without setting up virtual directories or deploying your website.

Along with these changes, a new edition of Visual Studio, called Visual Studio 2005 Team System, adds
advanced collaboration and code versioning support (which is far beyond that available in simpler tools such as
Visual SourceSafe). Although Visual Studio Team System isn’t discussed in this chapter, you can learn more from
http://lab.msdn.microsoft.com/teamsystem or Pro Visual Studio 2005 Team System (Apress, 2005).

Another interesting new tool is the freely downloadable ASP.NET Development Helper, which gives you the
ability to see view state, tracing, and caching information in your web browser. You’ll learn about the ASP.NET
Development Helper in the later “ASP.NET Development Helper” section.

The .NET Development Model
To create an ASP.NET application, you need two high-level areas of functionality:

• The compiler, which inspects the developer code and translates it into lower-level code
(in this case, IL)

• The IDE, which allows a developer to write code

The Compiler
.NET separates these two pieces. That way, every language can use the same design tools. The .NET
language compilers include the following:

• The Visual Basic compiler (vbc.exe)

• The C# compiler (csc.exe)

• The JScript compiler (jsc.exe)

• The J# compiler (vjc.exe)

■Note For a more comprehensive list that includes third-party languages, check out http://www.
dotnetpowered.com/languages.aspx.

CHAPTER 2 ■ VISUAL STUDIO 200524

4967CH02.qxd 8/12/05 10:44 AM Page 24

If you want to use these compilers manually, you can invoke them from the command line.
You’ll find all of them in c:\[WinDir]\Microsoft.NET\[Version], where WinDir is the directory of the
operating system (like c:\Windows) and Version is the version number of .NET you’ve installed, like
v2.0.50215. However, using the .NET compilers is awkward because you need to specify the files
you want to compile and the other .NET assemblies they use. You also need to compile your entire
application at once or compile each web page separately. To avoid these headaches, most develop-
ers rely on ASP.NET’s built-in support for compiling pages.

■Note In ASP.NET 1.x, Visual Studio used the precompiled code-behind model and was responsible for compiling
all web pages into a single DLL assembly. In Visual Studio 2005, this behavior changes. Now, Visual Studio lets
ASP.NET perform the compilation for each page the first time it’s requested. This speeds up debugging and allows
you to create websites that combine pages written in different languages. The original problems that motivated
Visual Studio’s precompilation model—optimizing the performance for the first request and reducing the need to
deploy source code files—can now be solved using ASP.NET’s precompilation features, which you’ll learn about
in Chapter 18.

The Visual Studio IDE
For those who are used to the previous version of the Visual Studio IDE, it’s an obvious choice to
use the new Visual Studio IDE. After all, it offers all the benefits of the previous version but with sig-
nificant advancements in operability, syntax, and integration with other languages. For those who
haven’t tried Visual Studio before, the reasons to use Visual Studio may not be immediately obvious.
Some of its advantages include the following:

WYSIWYG: Who writes HTML pages by hand? Using Visual Studio, you can tweak and fine-tune
even static HTML content, applying fonts and styles.

Less code to write: Most applications require a fair bit of standard boilerplate code, and
ASP.NET web pages are no exception. For example, when you add a new control to a web page,
you also need to define a variable that allows you to manipulate that control in your code. With
Visual Studio, these basic tasks are performed for you. Similar automation is provided for con-
necting to web services.

Intuitive coding style: By default, Visual Studio formats your code as you type, indenting auto-
matically and using color-coding to distinguish elements such as comments. These minor
differences make code much more readable and less prone to error. You can even configure
what automatic formatting Visual Studio applies, which is great if you prefer different brace
styles (such as K&R style, which always puts the opening brace on the same line as the preced-
ing declaration).

■Tip To see the formatting options, select Tools ➤ Options, make sure the Show All Settings check box is
checked, and then find the Text Editor ➤ C# ➤ Formatting group of settings. You’ll see a slew of options that
control where curly braces should be placed.

An integrated web server: To host an ASP.NET web application, you need web server software
like IIS, which waits for web requests and serves the appropriate pages. Setting up your web
server isn’t difficult, but it is inconvenient. Thanks to the integrated development web server in
Visual Studio, you can run a website directly from the design environment. You also have the
added security of knowing no external computer can run your test website.

CHAPTER 2 ■ VISUAL STUDIO 2005 25

4967CH02.qxd 8/12/05 10:44 AM Page 25

Multilanguage development: Visual Studio allows you to code in your language or languages of
choice using the same interface (IDE) at all times. Even better, Visual Studio 2005 adds the abil-
ity to put web pages coded in C# in the same project as web pages written in Visual Basic. The
only limitation is that you can’t use more than one language in the same web page (which
would create obvious compilation problems).

Faster development times: Many of the features in Visual Studio are geared toward helping
you get your work done faster. Convenience features such as powerful search-and-replace and
automatic comment and uncomment features, which can temporarily hide a block of code,
allow you to work quickly and efficiently.

Debugging: The Visual Studio debugging tools are the best way to track down mysterious
errors and diagnose strange behavior. You can execute your code one line at a time, set intelli-
gent breakpoints that you can save for later use, and view current in-memory information at
any time.

Visual Studio also has a wealth of features that you won’t see in this chapter, including project
management, integrated source code control, and a rich extensibility model.

Websites in Visual Studio
When the IDE first loads, it shows an initial start page. You can use various user-specific options
from this page and access online information such as recent MSDN articles. But to get right to work,
choose File ➤ New Website to create a new ASP.NET application. Visual Studio will then show the
New Web Site dialog box (see Figure 2-1). Notice that you don’t use Visual Studio’s File ➤ New Project
command. That’s because web applications aren’t projects, as you’ll see later in this chapter.

Figure 2-1. The New Web Site window

CHAPTER 2 ■ VISUAL STUDIO 200526

4967CH02.qxd 8/12/05 10:44 AM Page 26

The New Web Site window allows you to specify three details:

Template: The template determines what files your website starts with. Visual Studio supports
two types of basic ASP.NET applications: website applications and web service applications.
These applications are actually compiled and executed in the same way. In fact, you can add
web pages to a web service application and can add web services to an ordinary web applica-
tion. The only difference is the files that Visual Studio creates by default. In a web application,
you’ll start with one sample web page in your project. In a web service application, you’ll start
with a sample web service. Additionally, Visual Studio includes more sophisticated templates
for certain types of sites, and you can even create your own templates (or download third-party
offerings).

Location: The location specifies where the website files will be stored. Typically, you’ll choose
File System and then use a folder on the local computer or a network path. However, you can
also edit a website directly over HTTP or FTP (File Transfer Protocol). This is occasionally useful
if you want to perform live website edits on a remote web server. However, it also introduces
additional overhead. Of course, you should never edit a production web server directly because
changes are automatic and irreversible. Instead, limit your changes to test servers.

Language: The language identifies the .NET programming language you’ll use to code your
website. The language you choose is simply the default language for the project. This means
you can explicitly add Visual Basic web pages to a C# website, and vice versa (a feat that wasn’t
possible with earlier versions of Visual Studio).

Instead of typing the location in hand, you can click the Browse button, which shows the
Choose Location dialog box. Along the left side of Choose Location dialog box you’ll see four but-
tons that let you connect to different types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of drives and
directories or through the shares provided by other computers on the network. If you want to
create a new directory for your application, just click the Create New Folder icon above the top-
right corner of the directory tree. (You can also coax Visual Studio into creating a directory by
adding a new directory name to the end of your path.)

Local IIS: This choice allows you to browse the virtual directories made available through the
IIS web hosting software, assuming it’s running on the current computer. Chapter 18 describes
virtual directories in detail and shows you how to create them with IIS Manager. Impressively,
you can also create them in Visual Studio using the Create New Web Application icon at the
top-right corner of the virtual directory tree.

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead, you’ll need
to enter all the connection information, including the FTP site, the port, the directory, a user
name, and a password before you can connect.

Remote Web Server: This option accesses a website at a specified URL (uniform resource loca-
tor) using HTTP. For this to work, the web server must have the FrontPage Extensions installed.
When you connect, you’ll be prompted for a user name and password.

Figure 2-2 shows all these location types.

CHAPTER 2 ■ VISUAL STUDIO 2005 27

4967CH02.qxd 8/12/05 10:44 AM Page 27

Figure 2-2. Browsing to a website location

Once you make your selection and click Open, Visual Studio returns you to the Create Web Site
dialog box. Click OK, and Visual Studio will create the new web application. A new website starts
with exactly one file—a default.aspx start page.

Projectless Development
In many ways, Visual Studio 2005 web applications are more remarkable for what they don’t contain
than what they do. Unlike previous versions of Visual Studio, Visual Studio 2005 web applications
don’t include extra files, such as .csproj project files and .sln solution files. Instead, every file in
your web folder automatically is considered part of the web application. (This model makes sense,
because every web page in a virtual directory is independently accessible, whether or not you con-
sider it an official part of your project.)

Clearing out this clutter has several benefits:

• It’s less work to deploy your website, because you don’t need to specifically exclude these
files. There’s also less duplication of settings, because most of what Visual Studio needs
(such as assembly references) is stored in the web.config configuration file.

• Team collaboration is greatly simplified, because different people can work independently
on different pages without needing to lock the project files.

CHAPTER 2 ■ VISUAL STUDIO 200528

4967CH02.qxd 8/12/05 10:44 AM Page 28

• It’s easier to author websites with other tools, because no extra project files need to be
maintained.

• Files can easily be transferred from one web application to another—all you need to do is
copy the file.

Although this simplifies life dramatically, under the radar there are still the last vestiges of
Visual Studio’s solution-based system.

When you create a web application, Visual Studio actually creates solution files (.sln and .suo)
in a user-specific directory, like c:\Documents and Settings\[UserName]\Visual Studio 2005\
Projects\[ProjectName]. This file provides a few Visual Studio–specific features that aren’t directly
related to ASP.NET, such as debugging settings. For example, if you add a breakpoint to the code in a
web page (as discussed in the “Visual Studio Debugging” section later in this chapter), Visual Studio
stores the breakpoint in the .suo file so it’s still there when you open the project later. Similarly,
Visual Studio tracks the currently open files so it can restore your view when you return to the proj-
ect. This approach to solution management is fragile—obviously, if you move the project from one
location to another, you lose all this information. However, because this information isn’t really all
that important (think of it as a few project-specific preferences), losing it isn’t a serious problem.
The overall benefits of a projectless system are worth the trade-off.

Migrating a Visual Studio .NET Project
If you have an existing web application created with Visual Studio .NET 2002 or 2003, you can open
the project or solution file using the File ➤ Open Project command. When you do, Visual Studio
begins the Conversion Wizard.

The Conversion Wizard is exceedingly simple. It prompts you to choose whether to create
a backup and, if so, where it should be placed (see Figure 2-3). If this is your only copy of the
application, a backup is a good idea in case some aspects of your application can’t be converted
successfully. Otherwise, you can skip this option.

Figure 2-3. Importing a Visual Studio .NET 2003 project

CHAPTER 2 ■ VISUAL STUDIO 2005 29

4967CH02.qxd 8/12/05 10:44 AM Page 29

When you click Finish, Visual Studio performs an in-place conversion. The conversion tool is
fairly aggressive, and it attempts to convert every web page to use Visual Studio’s new code-behind
model. Any errors and warnings are added to a conversion log, which you can display when the
conversion is complete. In a typical website, the conversion operation runs without any errors but
generates a long list of warnings. These inform you when Visual Studio removes precompiled files,
changes pages to use automatic event wire-up, and modifies the accessibility of event handlers
(switching them from private to protected). All of these changes are minor modifications designed
to apply the new coding model, which is described in the section “The Coding Model” later in this
chapter. Figure 2-4 shows a sample log.

Figure 2-4. A conversion log with typical warnings

Visual Studio 2005 doesn’t support adding old web pages to a new web application using the
Website ➤ Add Existing Item. If you take this step and try to run your web application, you’ll receive
an error informing you that the Visual Studio .NET 2003 version of the code-behind model is no
longer supported. Instead, Visual Studio will recommend you use the Open Project feature to start
the Conversion Wizard.

Designing a Web Page
To start designing a web page, double-click the web page in the Solution Explorer (start with
default.aspx if you haven’t added any pages). A blank page will appear in the designer.

To add controls, choose the control type from the Toolbox on the left. (The controls in the
Toolbox are grouped in numerous categories based on their functions, but you’ll find basic ingredi-
ents in the Standard tab.) Once you’ve added a control, you can resize it and configure its properties

CHAPTER 2 ■ VISUAL STUDIO 200530

4967CH02.qxd 8/12/05 10:44 AM Page 30

in the Properties window. Every time you add a web control, Visual Studio automatically adds the
corresponding tag to your .aspx web-page file. You can switch your view to look at the tags by click-
ing the Source button at the bottom of the web designer window. Click Design to revert to the
graphical web form designer.

Figure 2-5 shows two views of the same web page that contain a label and a button. One view is
in HTML mode, and the other is in design mode.

Figure 2-5. The two modes for editing web pages

CHAPTER 2 ■ VISUAL STUDIO 2005 31

4967CH02.qxd 8/12/05 10:44 AM Page 31

Using the HTML view, you can manually add attributes or rearrange controls. In fact, Visual
Studio even provides limited IntelliSense features that automatically complete opening tags and
alert you if you use an invalid tag. Generally, you won’t need to use the HTML view in Visual Studio.
Instead, you can use the design view and configure controls through the Properties window.

■Note Unlike previous versions, Visual Studio 2005 doesn’t tamper with your HTML markup. Instead, it always
preserves the indenting you use. You can fine-tune this behavior using the Text Editor ➤ HTML group of settings in
the Tools ➤ Options dialog box. For example, one handy option that isn’t turned on by default is Format HTML on
Paste, which indents arbitrary blocks of markup when you paste them into a page.

To configure a control, click once to select it, or choose it by name in the drop-down list at the
top of the Properties window. Then, modify the appropriate properties in the window, such as Text,
ID, and ForeColor. These settings are automatically translated to the corresponding ASP.NET control
tag attributes and define the initial appearance of your control. Visual Studio even provides special
“choosers” (technically known as UITypeEditors) that allow you to select extended properties. For
example, you can select a color from a drop-down list that shows you the color, and you can config-
ure the font from a standard font selection dialog box.

To position a control on the page, you need to use all the usual tricks of HTML, such as para-
graphs, line breaks, and tables. Unlike previous versions, Visual Studio 2005 doesn’t support a
grid-layout mode for absolute positioning with CSS (Cascading Style Sheets). Instead, it encourages
you to use the more flexible flow-layout mode, where content can grow and shrink dynamically
without creating a problem. However, there is a way to get back to the grid-layout behavior. All you
need to do is add an inline CSS style for your control that specifies absolute positioning. (This style
will already exist in any pages you’ve created with a previous version of Visual Studio .NET in grid-
layout mode.) Here’s an example:

<asp:Button id="cmd" style="POSITION: absolute; left: 100px; top: 50px;"
runat="server" ... />

Once you’ve made this change, you’re free to drag the button around the window at will. Of
course, you shouldn’t go this route just because it seems closer to the Windows GUI (graphical user
interface) model. Few great web pages rely on absolute positioning, because it’s just too awkward
and inflexible.

Smart Tags
Another timesaving feature that’s new in Visual Studio 2005 is the smart tag; smart tags make it easier
to configure complex controls. Smart tags aren’t offered for all controls, but they are used for rich
controls such as the GridView, TreeView, and Calendar.

You’ll know a smart tag is available if, when you select a control, you see a small arrow in the
top-right corner. If you click this arrow, a window will appear with links that trigger other, higher-
level tasks. For example, Figure 2-6 shows how you can use this technique to access Calendar
autoformatting. (Smart tags can include many more features, but the Calendar smart tag provides
only a single link.)

CHAPTER 2 ■ VISUAL STUDIO 200532

4967CH02.qxd 8/12/05 10:44 AM Page 32

Figure 2-6. A smart tag for the Calendar control

Static HTML Tags
Along with full-fledged web controls, you can also add ordinary HTML tags. You simply drag these
from the HTML tab of the Toolbox.

For example, you might want to create a simple <div> tag to group some web controls with a
border. Visual Studio provides a valuable style builder for formatting any static HTML element with
CSS style properties. To test it, add the Div from the HTML section of the Toolbox, which appears
on your page as a panel. Then right-click the panel, and choose Style. The Style Builder dialog box
(shown in Figure 2-7) will appear, with options for configuring the colors, font, layout, and border
for the element. As you configure these properties, the web page’s HTML will be updated to reflect
your settings.

Figure 2-7. Building HTML styles

CHAPTER 2 ■ VISUAL STUDIO 2005 33

4967CH02.qxd 8/12/05 10:44 AM Page 33

If you want to configure the HTML element as a server control so that you can handle events
and interact with it in code, you need to right-click it in the web page and select Run As Server
Control. This adds the required runat="server" attribute to the control tag. Alternatively, you could
switch to design view and type this in on your own.

HTML Tables
One convenient way to organize content in a web page is to place it in the different cells of an
HTML table using the <table> tag. In previous versions of Visual Studio, the design-time support
for this strategy was poor. But in Visual Studio 2005, life gets easier. To try it, drag a table from the
HTML tab of the Toolbox. You’ll start with a standard 3✕3 table, but you can quickly transform it
using editing features that more closely resemble a word processor than a programming tool.
Here are some of the tricks you’ll want to use:

• To move from one cell to another in the table, press the Tab key or use the arrow keys. The
current cell is highlighted with a blue border. Inside each cell you can type static HTML or
drag and drop controls from the Toolbox.

• To add new rows and columns, right-click inside a cell, and choose from one of the many
options in the Insert submenu to insert rows, columns, and individual cells.

• To resize a part of the table, just click and drag.

• To format a cell, right-click inside it, and choose Style. This shows the same Style Builder
dialog box you saw in Figure 2-7.

• To work with several cells at once, hold down Ctrl while you click each cell. You can then
right-click to perform a batch formatting operation.

• To merge cells (in other words, change two cells into one cell that spans two columns), just
select the cells, right-click, and choose Merge.

With these conveniences, you might never need to resort to a design tool like Dreamweaver.

The Visual Studio IDE
Now that you’ve created a basic website, it’s a good time to take a tour of the different parts of the
Visual Studio interface. Figure 2-8 identifies each part of the Visual Studio window, and Table 2-1
describes each one.

Table 2-1. Visual Studio Windows

Windows Description

Solution Explorer Lists the files and subfolders that are in the web application folder.

Toolbox Shows ASP.NET’s built-in server controls and any third-party controls or
custom controls that you build yourself and add to the Toolbox. Controls
can be written in any language and used in any language.

Server Explorer Allows access to databases, system services, message queues, and other
server-side resources.

Properties Allows you to configure the currently selected element, whether it’s a file in
the Solution Explorer or a control on the design surface of a web form.

CHAPTER 2 ■ VISUAL STUDIO 200534

4967CH02.qxd 8/12/05 10:44 AM Page 34

Windows Description

Error List Reports on errors that Visual Studio has detected in your code but that you
haven’t resolved yet.

Task List Lists comments that start with a predefined moniker so that you can keep
track of portions of code that you want to change and also jump to the
appropriate position quickly.

Document Allows you to design a web page by dragging and dropping and to edit
the code files you have within your Solution Explorer. Also supports
non-ASP.NET file types, such as static HTML and XML files.

Macro Explorer Allows you to see all the macros you’ve created and execute them. Macros
are an advanced Visual Studio feature; they allow you to automate time-
consuming tasks. Visual Studio exposes a rich extensibility model, and
you can write a macro using pure .NET code.

Class View Shows a different view of your application that is organized to show all the
classes you’ve created (and their methods, properties, and events).

Figure 2-8. The Visual Studio interface

CHAPTER 2 ■ VISUAL STUDIO 2005 35

4967CH02.qxd 8/12/05 10:44 AM Page 35

■Tip The Visual Studio interface is highly configurable. You can drag the various windows and dock them to the
sides of the main Visual Studio window. Also, some windows on the side automatically slide into and out of view as
you move your mouse. If you want to freeze these windows in place, just click the thumbtack icon in the top-right
corner of the window.

Solution Explorer
The Solution Explorer is, at its most basic, a visual filing system. It allows you to see the files that are
in the web application directory.

Table 2-2 lists some of the file types you’re likely to see in an ASP.NET web application.

Table 2-2. ASP.NET File Types

File Description

Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an ASP
application). They contain the user interface and, optionally, the underlying
application code. Users request or navigate directly to one of these pages to
start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that they can’t be accessed directly. Instead, they must be hosted
inside an ASP.NET web page. User controls allow you to develop an important
piece of the user interface and reuse it in as many web forms as you want
without repetitive code.

Ends with .asmx These are ASP.NET web services. Web services work differently than web
pages, but they still share the same application resources, configuration
settings, and memory.

web.config This is the XML-based configuration file for your ASP.NET application.
It includes settings for customizing security, state management, memory
management, and much more. Visual Studio adds a web.config file when
you need it. (For example, it adds a web.config file that supports debugging
if you attempt to run your web application.) When you first create a website,
you won’t have a web.config file.

global.asax This is the global application file. You can use this file to define global
variables and react to global events, such as when a web application first
starts (see Chapter 5 for a detailed discussion). Visual Studio doesn’t create
a global.asax file by default—you need to add it if it’s appropriate.

Ends with .cs These are code-behind files that contain C# code. They allow you to separate
the application from the user interface of a web page. The code-behind
model is introduced in this chapter and used extensively in this book.

In addition, your web application can contain other resources that aren’t ASP.NET file types.
For example, your virtual directory can hold image files, HTML files, or CSS files. These resources
might be used in one of your ASP.NET web pages, or they can be used independently.

Visual Studio distinguishes between different file types. When you right-click a file in the list, a
context menu appears with the menu options that apply for that file type. For example, if you right-
click a web page, you’ll have the option of building it and launching it in a browser window.

Using the Solution Explorer, you can rename, rearrange, and add files. All these options are just
a right-click away. To delete a file, just select it in the Solution Explorer, and press the Delete key.

You can also add new files by right-clicking the Solution Explorer and selecting Add ➤ Add New
Item. You can add various different types of files, including web forms, web services, stand-alone

CHAPTER 2 ■ VISUAL STUDIO 200536

4967CH02.qxd 8/12/05 10:44 AM Page 36

classes, and so on. You can also copy files that already exist elsewhere on your computer (or an
accessible network path) by selecting Add ➤ Add Existing Item. Use the Add ➤ New Folder to create
a new subdirectory inside your web application. You can then drag web pages and other files into or
out of this directory.

Visual Studio also checks for project management events such as when another process
changes a file in a project you currently have open. When this occurs, Visual Studio will notify
you and give you the option to refresh the file.

Document Window
The document window is the portion of Visual Studio that allows you to edit various types of files
using different designers. Each file type has a default editor. To learn a file’s default editor, simply
right-click that file in the Solution Explorer, and then select Open With from the pop-up menu. The
default editor will have the word Default alongside it.

Depending on the applications you’ve installed, you may see additional designers that plug
into Visual Studio. For example, if you’ve installed FrontPage 2003, you’ll have the option of editing
web pages with a FrontPage designer (which actually opens your web page in a stand-alone
FrontPage window).

Toolbox
The Toolbox works in conjunction with the document window. Its primary use is providing the con-
trols that you can drag onto the design surface of a web form. However, it also allows you to store
code and HTML snippets.

The content of the Toolbox depends on the current designer you’re using as well as the project
type. For example, when designing a web page, you’ll see the set of tabs described in Table 2-3. Each
tab contains a group of buttons. You can see only one tab at a time. To view a tab, click the heading,
and the buttons will slide into view.

Table 2-3. Toolbox Tabs for an ASP.NET Project

Tab Description

Standard This tab includes the rich web server controls that are the heart of ASP.NET’s web
form model.

Data These components allow you to connect to a database. This tab includes
nonvisual data source controls that you can drop onto a form and configure at
design time (without using any code) and data display controls such as grids.

Validation These controls allow you to verify an associated input control against user-defined
rules. For example, you can specify the input can’t be empty, it must be a number,
it must be greater than a certain value, and so on. Chapter 4 has more details.

Navigation These controls are designed to display site maps and allow the user to navigate
from one page to another. You’ll learn about the navigation controls in Chapter 16.

Login These controls provide prebuilt security solutions, such as login boxes and a
wizard for creating users. You’ll learn about the login controls in Chapter 20.

WebParts This set of controls supports web parts, an ASP.NET model for building
componentized, highly configurable web portals. You’ll learn about web parts
in Chapter 29.

HTML This tab allows you to drag and drop static HTML elements. If you want, you can
also use this tab to create server-side HTML controls—just drop a static HTML
element onto a page, right-click it, and choose Run As Server Control.

General Provides a repository for code snippets and control objects. Just drag and drop
them here, and pull them off when you need to use them later.

CHAPTER 2 ■ VISUAL STUDIO 2005 37

4967CH02.qxd 8/12/05 10:44 AM Page 37

You can customize both the tabs and the items in each tab. To modify the tab groups, right-
click a tab heading, and select Rename Tab, Add Tab, or Delete Tab. To add an item, right-click the
blank space on the Toolbox, and Choose Items. You can also drag items from one tab group to
another.

Error List and Task List
The Error List and Task List are two versions of the same window. The Error List catalogs error infor-
mation that’s generated by Visual Studio when it detects problematic code. The Task List shows a
similar view with to-do tasks and other code annotations you’re tracking. Each entry in the Error
List and Task List consists of a text description and, optionally, a link that leads you to a specific
line of code somewhere in your project.

With the default Visual Studio settings, the Error List appears automatically whenever you
build a project that has errors (see Figure 2-9).

Figure 2-9. Viewing build errors in a project

To see the Task List, choose View ➤ Other Windows ➤ Task List. Two types of tasks exist—user
tasks and comments. You can choose which you want to see from the drop-down list at the top of
the Task List. User tasks are entries you’ve specifically added to the Task List. You create these by
clicking the Create User Task icon (which looks like a clipboard with a check mark) in the Task List.
You can give your task a basic description, a priority, and a check mark to indicate when it’s complete.

■Note As with breakpoints, any custom tasks you add by hand are stored in the hidden solution files. This
makes them fairly fragile—if you rename or move your project, these tasks will disappear without warning (or
without even a notification the next time you open the website).

The comment entries are more interesting, because they’re added automatically and they link
to a specific line in your code. To try the comment feature, move somewhere in your code, and enter
the comment marker (//) followed by the word TODO (which is commonly referred to as a token
tag). Now type in some descriptive text:

// TODO: Replace this hard-coded value with a configuration file setting.
string fileName = @"c:\myfile.txt"

Because your comment uses the recognized token tag TODO, Visual Studio recognizes it and
automatically adds it to the Task List (as shown in Figure 2-10).

CHAPTER 2 ■ VISUAL STUDIO 200538

4967CH02.qxd 8/12/05 10:44 AM Page 38

Figure 2-10. Keeping track of tasks

To move to the line of code, double-click the new task entry. Notice that if you remove the com-
ment, the task entry is automatically removed as well.

Three token tags are built-in—HACK, TODO, and UNDONE. However, you can add more.
Simply select Tools ➤ Options. In the Options dialog box, navigate to the Environment ➤ Task List
tab. You’ll see a list of comment tokens, which you can modify, remove, and add to. Figure 2-11
shows this window with a new ASP comment token that you could use to keep track of sections of
code that have been migrated from classic ASP pages.

Figure 2-11. Adding a new comment token

Server Explorer
The Server Explorer provides a tree that allows you to explore various types of services on the current
computer (and other servers on the network). It’s similar to the Computer Management administra-
tive tool. Typically, you’ll use the Server Explorer to learn about available event logs, message
queues, performance counters, system services, and SQL Server databases on your computer.

The Server Explorer is particularly noteworthy because it doesn’t just provide a way for you to
browse server resources; it also allows you to interact with them. For example, you can create data-
bases, execute queries, and write stored procedures using the Server Explorer in much the same
way that you would using the Enterprise Manager administrative utility that’s included with SQL
Server. To find out what you can do with a given item, right-click it. Figure 2-12 shows the Server
Explorer window listing the databases in a local SQL Server and allowing you to retrieve all the
records in the selected table.

CHAPTER 2 ■ VISUAL STUDIO 2005 39

4967CH02.qxd 8/12/05 10:44 AM Page 39

Figure 2-12. Querying data in a database table

The Code Editor
Many of Visual Studio’s most welcome enhancements appear when you start to write the code that
supports your user interface. To start coding, you need to switch to the code-behind view. To switch
back and forth, you can use two buttons that are placed just above the Solution Explorer window.
The tooltips identify these buttons as View Code and View Designer. When you switch to code view,
you’ll see the page class for your web page. You’ll learn more about code-behind later in this chapter.

ASP.NET is event-driven, and everything in your web-page code takes place in response to an
event. To create a simple event handler for the Button.Click event, double-click the button in design
view. Here’s a simple example that displays the current date and time in a label:

protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
}

To test this page, select Debug ➤ Start Debugging from the menu. Because this is the first time
running any page in this application, Visual Studio will inform you that you need a configuration
file that specifically enables debugging (see Figure 2-13).

CHAPTER 2 ■ VISUAL STUDIO 200540

4967CH02.qxd 8/12/05 10:44 AM Page 40

Figure 2-13. Adding a web.config file automatically

Click OK to add this configuration file. Then, Visual Studio will launch your default browser,
with the URL set to your page. At this point, your request will be passed to ASP.NET, which will com-
pile the page and execute it.

To test your event-handling logic, click the button on the page. The page will then be submitted
to ASP.NET, which will run your event-handling code and return a new HTML page with the data (as
shown in Figure 2-14).

Figure 2-14. Testing a simple web page

Adding Assembly References
By default, ASP.NET makes a small set of commonly used .NET assemblies available to all web
pages. These assemblies (listed in Table 2-4) are configured through a special machine-wide
configuration file. You don’t need to take any extra steps to use the classes in these assemblies.

Table 2-4. Core Assemblies for ASP.NET Pages

Assembly Description

mscorlib.dll and System.dll Includes the core set of .NET data types, common exception
types, and numerous other fundamental building blocks.

System.Configuration.dll Includes classes for reading and writing configuration
information in the web.config file, including your custom
settings.

System.Data.dll Includes the data container classes for ADO.NET, along with
the SQL Server data provider.

Continued

CHAPTER 2 ■ VISUAL STUDIO 2005 41

4967CH02.qxd 8/12/05 10:44 AM Page 41

Table 2-4. Continued

Assembly Description

System.Drawing.dll Includes classes representing colors, fonts, and shapes. Also
includes the GDI+ drawing logic you need to build graphics on
the fly.

System.Web.dll Includes the core ASP.NET classes, including classes for
building web forms, managing state, handling security, and
much more.

System.Web.Services.dll Includes classes for building web services—units of code that
can be remotely invoked over HTTP.

System.Xml.dll Includes .NET classes for reading, writing, searching,
transforming, and validating XML.

System.EnterpriseServices.dll Includes .NET classes for COM+ services such as transactions.

System.Web.Mobile.dll Includes .NET classes for the mobile web controls, which are
targeted for small devices such as web-enabled cell phones.

If you want to use additional features or a third-party component, you may need to import
more assemblies. For example, if you want to use an Oracle database, you need to add a reference to
the System.Data.OracleClient.dll assembly. To add a reference, select Website ➤ Add Reference. The
Add Reference dialog box will appear, with a list of registered .NET assemblies (see Figure 2-15).

Figure 2-15. Adding a reference

In the Add Reference dialog box, select the component you want to use. If you want to use a
component that isn’t listed here, you’ll need to click the Browse tab and select the DLL file from the
appropriate directory.

When you add a reference, Visual Studio modifies the web.config file to indicate that you
use this assembly. Here’s an example of what you might see after you add a reference to the
System.EnterpriseServices.dll file:

CHAPTER 2 ■ VISUAL STUDIO 200542

4967CH02.qxd 8/12/05 10:44 AM Page 42

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.web>
<compilation debug="true">
<assemblies>
<add assembly="System.Data.OracleClient, Version=2.0.0.0, ..."/>

</assemblies>
</compilation>
<!-- Other settings omitted. -->

</system.web>
</configuration>

Chapter 5 explores the web.config file in greater detail.
If you add a reference to an assembly that isn’t stored in the GAC (global assembly cache),

Visual Studio will create a Bin subdirectory in your web application and copy the DLL into that
directory. This step isn’t required for assemblies in the GAC because they are shared with all the
.NET applications on the computer.

■Note Unlike previous versions of Visual Studio, in Visual Studio 2005 you won’t see a list of assembly refer-
ences in the Solution Explorer. Instead, you need to crack open the web.config file to get that information.

If you look at the code for a web-page class, you’ll notice that Visual Studio imports a lengthy
number of core .NET namespaces. Here’s the code you’ll see:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

Adding a reference isn’t the same as importing the namespace with the using statement. The
using statement allows you to use the classes in a namespace without typing the long, fully qualified
class names. However, if you’re missing a reference, it doesn’t matter what using statements you
include—the classes won’t be available. For example, if you import the System.Web.UI namespace,
you can write Page instead of System.Web.UI.Page in your code. But if you haven’t added a reference
to the System.Web.dll assembly that contains these classes, you still won’t be able to access the
classes in the System.Web.UI namespace.

IntelliSense and Outlining
As you program with Visual Studio, you’ll become familiar with its many timesaving conveniences.
The following sections outline the most important features you’ll use (none of which is new in
Visual Studio 2005).

■Tip Visual Studio does include one new IntelliSense feature—XHTML (Extensible HTML) validation. You’ll learn
about this feature, and how to control the level of XHTML support you want, in Chapter 3.

CHAPTER 2 ■ VISUAL STUDIO 2005 43

4967CH02.qxd 8/12/05 10:44 AM Page 43

Outlining
Outlining allows Visual Studio to “collapse” a subroutine, block structure, or region to a single line.
It allows you to see the code that interests you, while hiding unimportant code. To collapse a por-
tion of code, click the minus box next to the first line. Click the box again (which will now have a
plus symbol) to expand it (see Figure 2-16).

Figure 2-16. Collapsing code

You can hide any section of code that you want. Simply select the code, right-click the selec-
tion, and choose Outlining ➤ Hide Selection.

Member List
Visual Studio makes it easy for you to interact with controls and classes. When you type a class or
object name, Visual Studio pops up a list of available properties and methods (see Figure 2-17). It
uses a similar trick to provide a list of data types when you define a variable and to provide a list of
valid values when you assign a value to an enumeration.

Visual Studio also provides a list of parameters and their data types when you call a method or
invoke a constructor. This information is presented in a tooltip above the code and is shown as you
type. Because the .NET class library heavily uses function overloading, these methods may have
multiple different versions. When they do, Visual Studio indicates the number of versions and
allows you to see the method definitions for each one by clicking the small up and down arrows in
the tooltip. Each time you click the arrow, the tooltip displays a different version of the overloaded
method (see Figure 2-18).

CHAPTER 2 ■ VISUAL STUDIO 200544

4967CH02.qxd 8/12/05 10:44 AM Page 44

Figure 2-17. IntelliSense at work

Figure 2-18. IntelliSense with overloaded methods

CHAPTER 2 ■ VISUAL STUDIO 2005 45

4967CH02.qxd 8/12/05 10:44 AM Page 45

Error Underlining
One of the code editor’s most useful features is error underlining. Visual Studio is able to detect a
variety of error conditions, such as undefined variables, properties, or methods; invalid data type
conversions; and missing code elements. Rather than stopping you to alert you that a problem
exists, the Visual Studio editor quietly underlines the offending code. You can hover your mouse
over an underlined error to see a brief tooltip description of the problem (see Figure 2-19).

Figure 2-19. Highlighting errors at design time

Visual Studio won’t flag your errors immediately. Instead, it will quickly scan through your
code as soon as you try to compile it and mark all the errors it finds. If your code contains at least
one error, Visual Studio will ask you whether it should continue. At this point, you’ll almost always
decide to cancel the operation and fix the problems Visual Studio has reported. (If you choose to
continue, you’ll actually wind up using the last compiled version of your application, because the
.NET compilers can’t build an application that has errors.)

■Note You may find that as you fix errors and rebuild your project you discover more problems. That’s because
Visual Studio doesn’t check for all types of errors at once. When you try to compile your application, Visual Studio
scans for basic problems such as unrecognized class names. If these problems exist, they can easily mask other
errors. On the other hand, if your code passes this basic level of inspection, Visual Studio checks for more subtle
problems such as trying to use an unassigned variable.

CHAPTER 2 ■ VISUAL STUDIO 200546

4967CH02.qxd 8/12/05 10:44 AM Page 46

The Coding Model
So far, you’ve learned how to design simple web pages, and you’ve taken a tour of the Visual Studio
interface. But before you get to serious coding, it’s important to understand a little more about the
underpinnings of the ASP.NET code model. In this section, you’ll learn about your options for using
code to program a web page and how ASP.NET events wire up to your code.

Visual Studio supports two models for coding web pages and web services:

Inline code: This model is the closest to traditional ASP. All the code and HTML is stored in a
single .aspx file. The code is embedded in one or more script blocks. However, even though the
code is in a script block, it doesn’t lose IntelliSense or debugging support, and it doesn’t need
to be executed linearly (like classic ASP code). Instead, you’ll still react to control events and
use subroutines. This model is handy because it keeps everything in one neat package, and it’s
popular for coding simple web pages.

Code-behind: This model separates each ASP.NET web page into two files: an .aspx markup
file with the HTML and control tags, and a .cs code file with the source code for the page. This
model provides better organization, and separating the user interface from programmatic logic
is keenly important when building complex pages. In Visual Studio 2005, the implementation
of the code-behind model has changed, but the overall philosophy is the same.

In .NET 1.0 and 1.1, the design tool you choose determines the model you use. With Visual Stu-
dio, you have the freedom to use either approach. When you add a new web page to your website
(using Website ➤ Add New Item), the Place Code in a Separate File check box chooses whether you
want to use the code-behind model (see Figure 2-20). Visual Studio remembers your previous set-
ting for the next time you add a new page, but it’s completely valid (albeit potentially confusing) to
mix both styles of pages in the same application.

Figure 2-20. Choosing the coding model

CHAPTER 2 ■ VISUAL STUDIO 2005 47

4967CH02.qxd 8/12/05 10:44 AM Page 47

To understand the difference, it helps to consider a simple page, like the following dynamic
time example; this is TestFormInline.aspx, which shows how the page looks with inline code:

<%@ Page Language="C#" %>
<script runat="server">

protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
}

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Test Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server" Text="Click Me!"></asp:Label>

<asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
Text="Button" /></div>

</form>
</body>
</html>

The following listings, TestFormCodeBehind.aspx and TestFormCodeBehind.aspx.cs,
show how the page is broken up into two pieces using the code-behind model. This is
TestFormCodeBehind.aspx:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
Inherits="TestFormCodeBehind"%>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Test Page</title>
</head>
<body>

<form id="form1" runat="server">
<div>

<asp:Label ID="Label1" runat="server" Text="Click Me!"></asp:Label>

<asp:Button ID="Button1" runat="server" OnClick="Button1_Click"
Text="Button" /></div>

</form>
</body>
</html>

This is TestFormCodeBehind.aspx.cs:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;

CHAPTER 2 ■ VISUAL STUDIO 200548

4967CH02.qxd 8/12/05 10:44 AM Page 48

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class TestFormCodeBehind : System.Web.UI.Page
{

protected void Button1_Click(object sender, EventArgs e)
{

Label1.Text = "Current time: " + DateTime.Now.ToLongTimeString();
}

}

The only real difference in this code is that the page class is no longer implicit—instead it is
declared to contain all the page methods.

Overall, the code-behind model is preferred for complex pages. Although the inline code
model is slightly more compact for small pages, as your code and HTML grows it becomes much
easier to deal with both portions separately. The code-behind model is also conceptually cleaner,
as it explicitly indicates the class you’ve created and the namespaces you’ve imported. Finally, the
code-behind model introduces the possibility that a web designer may refine the markup in your
pages without touching your code. This book uses the code-behind model for all examples.

How Code-Behind Files Are Connected to Pages
Every .aspx page starts with a Page directive. This Page directive specifies the language for the page,
and it also tells ASP.NET where to find the associated code (unless you’re using inline code, in which
case the code is contained in the same file).

You can specify where to find the associated code in several ways. In previous versions of
ASP.NET, it was common to use the Src attribute to point to the source code file or the Inherits
attribute to indicate a compiled class name. However, both of these options have their idiosyn-
crasies. For example, with the Inherits attribute, you’re forced to always precompile your code,
which is tedious (and can cause problems in development teams, because the standard option is
to compile every page into a single DLL assembly). But the real problem is that both approaches
force you to declare every web control you want to use with a member variable. This adds a lot of
boilerplate code.

In ASP.NET 2.0, you can solve the problem using a new language feature called partial classes,
which let you split a single class into multiple source code files. Essentially, the model is the same as
before, but the control declarations are shuffled into a separate file. You, the developer, never need
to be distracted by this file—instead you can just access your web-page controls by name. Keen eyes
will have spotted the word partial in the class declaration for your web-page code:

public partial class TestFormCodeBehind : System.Web.UI.Page
{ ... }

With this bit of infrastructure in place, the rest is easy. Your .aspx page links to the source code
file using the CodeFile attribute, as shown here:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="TestFormCodeBehind.aspx.cs"
Inherits="TestFormCodeBehind"%>

Notice that Visual Studio uses a slightly unusual naming syntax for the source code file. It has
the full name of the corresponding web page, complete with the .aspx extension, followed by the .cs
extension at the end. This is just a matter of convention, and it avoids a problem if you happen to
create two different code-behind file types (for example, a web page and a web service) with the
same name.

CHAPTER 2 ■ VISUAL STUDIO 2005 49

4967CH02.qxd 8/12/05 10:44 AM Page 49

How Control Tags Are Connected to Page Variables
When you request your web page in a browser, ASP.NET starts by finding the associated code file.
Then, it generates a variable declaration for each control you have. For example, imagine you have
a text box named txtInput:

<asp:TextBox id="txtInput" runat="server"/>

ASP.NET generates the following member variable declaration and merges it with your page
class using the magic of partial classes:

protected System.Web.UI.TextBox txtInput;

Of course, you won’t see this declaration. But you rely on it every time you write a line of code
that refers to the txtInput object (either to read or to write a property):

txtInput.Text = "Hello.";

To make sure this system works, you must keep both the .aspx markup file (with the control
tags) and the .cs file (with the source code) synchronized. If you edit control names in one piece
using another tool (such as a text editor), you’ll break the link, and your code won’t compile.

Incidentally, you’ll notice that control variables are always declared with the protected accessi-
bility keyword. That’s because of the way ASP.NET uses inheritance in the web-page model. The
following three layers are at work:

• First, the Page class from the .NET class library defines the basic functionality that allows a
web page to host other controls, render itself to HTML, and provide access to the traditional
ASP objects such as Request, Response, and Session.

• Second, your code-behind class (for example, TestFormCodeBehind) inherits from the Page
class to acquire the basic set of ASP.NET web-page functionality.

• Finally, the .aspx page (for example, HelloWorldPage.aspx) inherits the code from the custom
page class you created. This allows it to combine the user interface with the code that sup-
ports it.

Protected variables act like private variables with a key difference—they are accessible to
derived classes. In other words, using protected variables in your code-behind class ensures that
the variables are accessible in the derived page class. This allows ASP.NET to connect your control
variables to your control tags at runtime.

How Events Are Connected to Event Handlers
Most of the code in an ASP.NET web page is placed inside event handlers that react to web control
events. Using Visual Studio, you can add an event handler to your code in three ways:

Type it in by hand: In this case, you add the method directly to the page class. You must specify
the appropriate parameters so that the signature of the event handler exactly matches the sig-
nature of the event you want to handle. You’ll also need to edit the control tag so that it links
the control to the appropriate event handler. (Alternatively, you can use delegates to wire this
up programmatically.)

Double-click a control in design view: In this case, Visual Studio will create an event handler
for that control’s default event (and adjust the control tag accordingly). For example, if you
double-click the page, it will create a Page.Load event handler. If you double-click a Button
control, Visual Studio will create an event handler for the Click event.

CHAPTER 2 ■ VISUAL STUDIO 200550

4967CH02.qxd 8/12/05 10:44 AM Page 50

Choose the event from the Properties window: Just select the control, and click the lightning
bolt in the Properties window. You’ll see a list of all the events provided by that control. Double-
click in the box next to the event you want to handle, and Visual Studio will automatically
generate the event handler in your page class and adjust the control tag.

The second and third options are the most convenient. The third option is the most flexible,
because it allows you to select a method in the page class that you’ve already created. Just select
the event in the Properties window, and click the drop-down arrow at the right. You’ll see a list that
includes all the methods in your class that match the signature this event requires. You can then
choose a method from the list to connect it. Figure 2-21 shows an example where the Button.Click
event is connected to the Button_Click() method in your page class. The only limitation of this tech-
nique is that it works exclusively with web controls, not server-side HTML controls.

Figure 2-21. Attaching an event handler

Visual Studio 2005 uses automatic event wire-up, as indicated in the Page directive. Automatic
event wire-up has two basic principles:

• All page event handlers are connected automatically based on the name of the event han-
dler. In other words, the Page_Load() method is automatically called when the page loads.
Visual Studio adds a comment to your page class to point out the commonly used event
methods.

• All control event handlers are connected using attributes in the control tag. The attribute has
the same name as the event, prefixed by the word On.

For example, if you want to handle the Click event of the Button control, you simply need to set
the OnClick attribute in the control tag with the name of the event handler you want to use. Here’s
the change you need:

<asp:Button id="cmdOK" OnClick="txtName_Click" runat="server">

ASP.NET controls always use this syntax. Remember, because ASP.NET must connect the event
handlers, the derived page class must be able to access the code-behind class. This means your
event handlers must be declared with the protected or public keyword. (Protected is preferred,
because it prevents other classes from seeing this method.)

Of course, if you’re familiar with .NET events, you know there’s another approach to connect an
event handler. You can do it dynamically through code using delegates. Here’s an example:

cmdOK.Click += new EventHandler(txtName_Click);

This approach is useful if you’re creating controls on the fly. You’ll see this technique in action
in Chapter 3.

CHAPTER 2 ■ VISUAL STUDIO 2005 51

4967CH02.qxd 8/12/05 10:44 AM Page 51

Visual Studio Debugging
Visual Studio has always provided robust tools for debugging your web applications. In Visual Studio
2005, these tools remain essentially the same, with some minor enhancements that make it easier
to drill into live objects and collections at runtime.

To debug a specific web page in Visual Studio, select that web page in the Solution Explorer,
and click the Start Debugging button on the toolbar. (If you are currently editing the web page you
want to test, you don’t need to select it at all—just click Start Debugging to launch it directly.)

What happens next depends on the location of your project. If your project is stored on a
remote web server or a local IIS virtual directory, Visual Studio simply launches your default
browser and directs you to the appropriate URL. If you’ve used a file system application, Visual
Studio starts its integrated web server on a dynamically selected port (which prevents it from con-
flicting with IIS, if it’s installed). Then Visual Studio launches the default browser and passes it a
URL that points to the local web server. Either way, the real work—compiling the page and creating
the page objects—is passed along to the ASP.NET worker process.

■Tip Visual Studio’s built-in web server allows you to retrieve a file listing. This means if you create a web appli-
cation named MyApp, you can make a request in the form of http://localhost:port/MyApp to see a list of
pages. Then, just click the page you want to test. This process assumes your web application doesn’t have a
default.aspx page—if it does, any requests for the website root automatically return this page.

The separation between Visual Studio, the web server, and ASP.NET allows for a few interesting
tricks. For example, while your browser window is open, you can still make changes to the code
and tags of your web pages. Once you’ve completed your changes, just save the page, and click the
Refresh button in your browser to rerequest it. Although you’ll always be forced to restart the entire
page to see the results of any changes you make, it’s still more convenient than rebuilding your
whole project.

Fixing and restarting a web page is handy, but what about when you need to track down an
elusive error? In these cases, you need Visual Studio’s debugging smarts, which are described in the
next few sections.

■Note When you use the test web server, it runs all code using your user account. This is different from the
much more limited behavior you’ll see in IIS, which uses a less-privileged account to ensure security. It’s important
to understand the difference, because if your application accesses protected resources (such as the file system, a
database, the registry, or an event log), you’ll need to make sure you explicitly allow the IIS user. For more informa-
tion about IIS and the hosting model, refer to Chapter 18.

Single-Step Debugging
Single-step debugging allows you to execute your code one line at a time. It’s incredibly easy to use.
Just follow these steps:

1. Find a location in your code where you want to pause execution, and start single-stepping
(you can use any executable line of code but not a variable declaration, comment, or
blank line). Click in the margin next to the line code, and a red breakpoint will appear
(see Figure 2-22).

CHAPTER 2 ■ VISUAL STUDIO 200552

4967CH02.qxd 8/12/05 10:44 AM Page 52

Figure 2-22. Setting a breakpoint

2. Now start your program as you would ordinarily. When the program reaches your break-
point, execution will pause, and you’ll be switched back to the Visual Studio code window.
The breakpoint statement won’t be executed.

3. At this point, you have several options. You can execute the current line by pressing F11. The
following line in your code will be highlighted with a yellow arrow, indicating that this is the
next line that will be executed. You can continue like this through your program, running
one line at a time by pressing F11 and following the code’s path of execution. Or, you can
exit break mode and resume running your code by pressing F5.

■Note Instead of using shortcut keys such as F11 and F5, you can use the buttons in the Visual Studio Debug
toolbar. Alternatively, you can right-click the code window and choose an option from the context menu.

4. Whenever the code is in break mode, you can hover over variables to see their current con-
tents. This allows you to verify that variables contain the values you expect (see Figure 2-23).
If you hover over an object, you can drill down into all the individual properties by clicking a
small plus symbol to expand it (see Figure 2-24).

CHAPTER 2 ■ VISUAL STUDIO 2005 53

4967CH02.qxd 8/12/05 10:44 AM Page 53

Figure 2-23. Viewing variable contents in break mode

Figure 2-24. Viewing object properties in break mode

CHAPTER 2 ■ VISUAL STUDIO 200554

4967CH02.qxd 8/12/05 10:44 AM Page 54

■Tip You can even modify the values in a variable or property directly—just click inside the tooltip, and enter the
new value. This allows you to simulate scenarios that are difficult or time-consuming to re-create manually or to
test specific error conditions.

5. You can also use any of the commands listed in Table 2-5 while in break mode. These com-
mands are available from the context menu by right-clicking the code window or by using
the associated hot key.

Table 2-5. Commands Available in Break Mode

Command (Hot Key) Description

Step Into (F11) Executes the currently highlighted line and then pauses. If the currently
highlighted line calls a procedure, execution will pause at the first
executable line inside the method or function (which is why this
feature is called stepping into).

Step Over (F10) The same as Step Into, except that it runs procedures as though
they are a single line. If you select the Step Over command while a
procedure call is highlighted, the entire procedure will be executed.
Execution will pause at the next executable statement in the current
procedure.

Step Out (Shift+F11) Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
function. In other words, this allows you to step “out” of the current
procedure in one large jump.

Continue (F5) Resumes the program and continues to run it normally without
pausing until another breakpoint is reached.

Run to Cursor Allows you to run all the code up to a specific line (where your cursor
is currently positioned). You can use this technique to skip a time-
consuming loop.

Set Next Statement Allows you to change your program’s path of execution while
debugging. It causes your program to mark the current line (where
your cursor is positioned) as the current line for execution. When you
resume execution, this line will be executed, and the program will
continue from that point.

Show Next Statement Moves focus to the line of code that is marked for execution. This line
is marked by a yellow arrow. The Show Next Statement command is
useful if you lose your place while editing.

You can switch your program into break mode at any point by clicking the pause button in the
toolbar or by selecting Debug ➤ Break All.

Advanced Breakpoints
Choose Debug ➤ Windows ➤ Breakpoints to see a window that lists all the breakpoints in your cur-
rent project. The Breakpoints window provides a hit count, showing you the number of times a
breakpoint has been encountered (see Figure 2-25). You can jump to the corresponding location in
code by double-clicking a breakpoint. You can also use the Breakpoints window to disable a break-
point without removing it. That allows you to keep a breakpoint to use in testing later, without
leaving it active. Breakpoints are automatically saved with the hidden solution file described earlier.

CHAPTER 2 ■ VISUAL STUDIO 2005 55

4967CH02.qxd 8/12/05 10:44 AM Page 55

Figure 2-25. The Breakpoints window

Visual Studio allows you to customize breakpoints so they occur only if certain conditions are
true. To customize a breakpoint, right-click it, and select Breakpoint Properties. In the window that
appears, you can take one of the following actions:

• Click the Condition button to set an expression. You can choose to break when this expres-
sion is true or when it has changed since the last time the breakpoint was hit.

• Click the Hit Count button to create a breakpoint that pauses only after a breakpoint has
been hit a certain number of times (for example, at least 20) or a specific multiple of times
(for example, every fifth time).

Variable Watches
In some cases, you might want to track the status of a variable without switching into break mode
repeatedly. In this case, it’s more useful to use the Locals, Autos, and Watch windows, which allow
you track variables across an entire application. Table 2-6 describes these windows.

Table 2-6. Variable Tracking Windows

Window Description

Locals Automatically displays all the variables that are in scope in the current procedure.
This offers a quick summary of important variables.

Autos Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed
or changed in the previous line.

Watch Displays variables you have added. Watches are saved with your project, so you can
continue tracking a variable later. To add a watch, right-click a variable in your code,
and select Add Watch; alternatively, double-click the last row in the Watch window,
and type in the variable name.

Each row in the Locals, Autos, and Watch windows provides information about the type or class
of the variable and its current value. If the variable holds an object instance, you can expand the
variable and see its private members and properties. For example, in the Locals window you’ll see
the this variable, which is a reference to the current page class. If you click the plus symbol next to
this, a full list will appear that describes many page properties (and some system values), as shown
in Figure 2-26.

CHAPTER 2 ■ VISUAL STUDIO 200556

4967CH02.qxd 8/12/05 10:44 AM Page 56

Figure 2-26. Viewing the current page class in the Locals window

The Locals, Autos, and Watch windows allow you to change variables or properties while your
program is in break mode. Just double-click the current value in the Value column, and type in a
new value. If you are missing one of the watch windows, you can show it manually by selecting it
from the Debug ➤ Windows submenu.

Visual Studio Macros
One of the most exciting frills of the Visual Studio development environment is its powerful macro
and add-in framework (which is largely unchanged from previous versions of Visual Studio .NET).
This framework, known as the Visual Studio Automation model, provides almost 200 objects that
give you unprecedented control over the IDE, including the ability to access and manipulate the
current project hierarchy, the collection of open windows, and the integrated debugger. One of the
most convenient and flexible Automation tools is the macro facility.

The simplest macro is a keystroke recording. To create a simple keystroke macro, select Tools ➤
Macros ➤ Record Temporary Macro from the Visual Studio menu, and press the appropriate key-
strokes. Once you’re finished, click the stop button on the floating macro toolbar. You can now
replay the recorded macro (with the Ctrl+Shift+P shortcut key).

■Note Visual Studio allows only one recorded macro, which is overwritten every time you record a new one.
To make a temporary macro permanent, you’ll need to cut and paste the code into a different subroutine.

A good way to start learning about macros is to use the record facility and then look at the code
it generates. Select Tool ➤ Macros ➤ Macro Explorer to see a window that shows a tree of macro
modules and the macros they contain (see Figure 2-27). Each macro corresponds to a Visual Basic
subroutine. (Unfortunately, C# is not supported.) To edit the macro you just created, right-click the
TemporaryMacro subroutine in the RecordingModule, and select Edit.

CHAPTER 2 ■ VISUAL STUDIO 2005 57

4967CH02.qxd 8/12/05 10:44 AM Page 57

Figure 2-27. The Macro Explorer

Macro code uses a special DTE (design-time environment) object model. The DTE hierarchy
provides the core features that allow you to interact with every aspect of the IDE. Some of the ingre-
dients at your fingertips include the following:

• Window objects (used to close, rearrange, or otherwise manipulate open windows)

• Document objects (used to edit text)

• Solution and project objects (used to manage the underlying files and project collection)

• Tool-window objects (used to configure the IDE’s interface)

• Debugging objects (used for tasks such as creating breakpoints and halting execution)

• Event objects (used to react to IDE events)

• Code-manipulation objects (used to analyze your project’s code constructs)

For example, the following macro automatically lists all the files in the project that have been
modified but not saved. The list is shown in the Output window.

Sub ListModifiedDocuments()
Dim win As Window = DTE.Windows.Item(Constants.vsWindowKindCommandWindow)
Dim target As Object

' If the current window is an Output window, use it. Otherwise, use a
' helper function to find and activate the window.
If (DTE.ActiveWindow Is win) Then

target = win.Object
Else

target = GetOutputWindowPane(“Modified Documents”)
target.clear()

End If

' Loop through all the open documents, and if unsaved changes are detected,
' write the document name to the Output window.
Dim doc As Document
For Each doc In DTE.Documents

If Not doc.Saved Then
target.OutputString(doc.Name & " " & doc.FullName & _
Microsoft.VisualBasic.Constants.vbCrLf)

End If
Next

End Sub

CHAPTER 2 ■ VISUAL STUDIO 200558

4967CH02.qxd 8/12/05 10:44 AM Page 58

Figure 2-28 shows the result of running this macro.

Figure 2-28. Detecting changed documents

This is only one of several dozen useful macros that are included in the Samples macro project,
which comes with Visual Studio 2005 (and the code download for this chapter). To learn more about
Visual Studio macros and add-ins, you can consult a dedicated book on the subject. Several good
titles exist for the previous version of Visual Studio .NET, including Inside Microsoft Visual Studio
.NET (Microsoft Press, 2003).

■Tip Many useful Visual Studio macros are installed by default with Visual Studio 2005. Look under the
Samples group in the Macro Explorer, which has macros for adding comments, switching on and off line numbers,
inserting dates and times, formatting code, and debugging. You can also download more advanced add-ins from
http://msdn.microsoft.com/vstudio/downloads/samples. These samples can do everything from
automating the build process and integrating with Outlook to spell-checking the text in your user interface.

ASP.NET Development Helper
Another interesting tool that’s only begun its development is the ASP.NET Development Helper, a
free tool created by Nikhil Kothari from the ASP.NET team. The central goal of the ASP.NET Develop-
ment Helper is to improve the debugging experience for ASP.NET developers by enhancing the
ability of the browser to participate in the debugging process. Currently, the ASP.NET Development
Helper is limited to just a few useful features:

• It can report whether a page is in debug or tracing mode.

• It can display the view state information for a page.

• It can display the trace information for a page (and hide it from the page, making sure your
layout isn’t cluttered).

• It can clear the cache or trigger an application restart.

Many of these features haven’t been covered yet, but you’ll see a brief example of the ASP.NET
Development Helper in the next chapter.

The design of the ASP.NET Development Helper is quite interesting. Essentially, it’s built out of
two pieces:

CHAPTER 2 ■ VISUAL STUDIO 2005 59

4967CH02.qxd 8/12/05 10:44 AM Page 59

• An HTTP module that runs on the web server and makes additional information available to
the client browser. (You’ll learn about HTTP modules in Chapter 5.)

• An unmanaged browser plug-in that communicates with the HTTP module and displays the
important information in a side panel in the browser (see Figure 2-29). The browser plug-in
is designed exclusively for Internet Explorer, but at least one other developer has already
created a Firefox version that works with the same HTTP module.

Figure 2-29. The ASP.NET Development Helper

To download the ASP.NET Development Helper, surf to http://www.nikhilk.net/
ASPNETDevHelperTool.aspx. There you can download two DLLs, one for the HTTP module
(WebDevInfo.dll) and one for the browser plug-in (WebDevInfo.BHO.dll). Copy these to any
directory.

Then, install the browser extension with the following command line:

regsvr32 nStuff.WebDevInfo.BHO.dll

Next, you need install the assembly for the HTTP module into the GAC. You can do this by
dragging and dropping in Windows Explorer, but it’s generally easier to use the gacutil.exe utility.
Start a Visual Studio command prompt (choose Programs ➤ Visual Studio 2005 ➤ Visual Studio
Tools ➤ Visual Studio 2005 Command Prompt from the Start menu), and then run this command:

gacutil /i nStuff.WebDevInfo.dll

CHAPTER 2 ■ VISUAL STUDIO 200560

4967CH02.qxd 8/12/05 10:44 AM Page 60

Now, when you want to use this tool with a web application, you need to modify the web.config
file so it loads the HTTP module. The content you need depends on the exact version of the tool
you’re using, but it looks something like this:

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<system.web>
<httpModules>
<add name="DevInfo" type="nStuff.WebDevInfo.DevInfoModule, nStuff.WebDevInfo,

Version=0.5.0.0, Culture=neutral, PublicKeyToken=8fc0e3af5abcb6c4" />
</httpModules>
...

</system.web>
</configuration>

Now, run one of the pages from this application. To actually call up the browser plug-in, look
for a button (with a gear icon) in the browser, which will have been added to the end of the Standard
toolbar. When you click this icon, you’ll see a display like the one shown in Figure 2-29 (assuming
you’re currently viewing an ASP.NET page from an application that has the matching HTTP module
loaded).

You’ll see the ASP.NET Developer Helper at work in Chapter 3.

Summary
This chapter considered the role that Visual Studio can play in helping you develop your web appli-
cations. At the same time that you explored its rich design-time environment, you also learned
about how it works behind the scenes with the code-behind model and how to extend it with time-
saving features such as macros. In the next two chapters, you’ll jump into full-fledged ASP.NET
coding by examining web pages and server controls.

CHAPTER 2 ■ VISUAL STUDIO 2005 61

4967CH02.qxd 8/12/05 10:44 AM Page 61

4967CH02.qxd 8/12/05 10:44 AM Page 62

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

